Maths with Lemon

Vector equation of a line

"Many people who have not studied mathematics confuse it with arithmetic and consider it a dry and fruitless science. In reality, however, it is a science which requires a great amount of imagination."

Sofia Kovalevskaya

Vector equations of a line in 2D

What you have to know:

Key Points

  • 1. Watch the video:
  • 2. Watch this solved problem video

Vector equation of a line in 3D

What you have to know:

  • Vector equation of a line in 2D.

Key Points

  • 1. Watch the video:
  • 2. Watch this solved problem video

Scalar product

What you have to know:

  • How to calculate the magnitude of a vector.
  • How to find an angle using the inverse function of cosine.

Key Points

  • 1. Watch the video:
  • 2. Perpendicular vectors and dot product. Watch this video

  • 3. Example of perpendicular vectors. Watch this video

Cross product of two vectors

What you have to know:

  • How to calculate the scalar product of two vectors.
  • How to find an angle using the inverse function of cosine.

Key Points

  • 1. Watch the video:
  • 2. How to find the area of a triangle using the vector product. Watch this video

Angle between two lines

What you have to know:

  • How to calculate the scalar product of two vectors.
  • How to find an angle using the inverse function of cosine.

Key Points

  • 1. Watch the video:
  • 2. Perpendicular vectors to a line and distance. Watch this video

Extra

Material and references:

  • Hodder Book HL(ISBN: 9781510462366) :
    8D, 8E, 8F, 8G, 8H

Key Points

  • 1. You should know that the scalar (dot) product is linked to the angle between two vectors: \[ \mathbf{a}\cdot\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta = a_1b_1 + a_2b_2 + a_3b_3. \]

  • 2. You should be able to use the algebraic properties of the scalar product:
    \( \mathbf{a}\cdot\mathbf{b} = \mathbf{b}\cdot\mathbf{a} \),
    \( (-\mathbf{a})\cdot\mathbf{b} = -(\mathbf{a}\cdot\mathbf{b}) \),
    >\( \mathbf{a}\cdot(\mathbf{b}+\mathbf{c}) = (\mathbf{a}\cdot\mathbf{b})+(\mathbf{a}\cdot\mathbf{c}) \),
    \( (k\mathbf{a})\cdot\mathbf{b} = k(\mathbf{a}\cdot\mathbf{b}) \), and
    \( \mathbf{a}\cdot\mathbf{a} = |\mathbf{a}|^2 \).

  • 3. You should know that vectors \( \mathbf{a} \) and \( \mathbf{b} \) are parallel if \( \mathbf{b} = t\mathbf{a} \) for some scalar \( t \), and perpendicular if \( \mathbf{a}\cdot\mathbf{b} = 0 \).

  • 4. You should be able to find and use various forms of the equation of a line. \[ \mathbf{r} = \mathbf{a} + \lambda\mathbf{d}, \] where \( \mathbf{d} \) is a direction vector and \( \mathbf{a} \) is the position vector of a point on the line.

  • 5. Writing \( \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) gives the parametric equations of the line by expressing \( x, y, z \) in terms of \( \lambda \). Eliminating \( \lambda \) gives the Cartesian form \[ \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}. \]

  • 6. Line (motion): \( \mathbf{r}=\mathbf{a}+\lambda\mathbf{d} \), with \( \lambda=t \), velocity \( \mathbf{d} \), speed \( |\mathbf{d}| \).
    Angle between lines: \( \cos\theta=\dfrac{\mathbf{d}_1\cdot\mathbf{d}_2}{|\mathbf{d}_1||\mathbf{d}_2|} \).
    Cross product: \( \mathbf{a}\times\mathbf{b}= \begin{pmatrix} a_2b_3-a_3b_2\\ a_3b_1-a_1b_3\\ a_1b_2-a_2b_1 \end{pmatrix} \), \( |\mathbf{a}\times\mathbf{b}|=|\mathbf{a}||\mathbf{b}|\sin\theta \) (area of parallelogram).

  • 7. Properties of cross product:
    \( \mathbf{a}\times\mathbf{b} = -\,\mathbf{b}\times\mathbf{a} \)
    \( (k\mathbf{a})\times\mathbf{b} = \mathbf{a}\times(k\mathbf{b}) = k(\mathbf{a}\times\mathbf{b}) \)
    \( \mathbf{a}\times(\mathbf{b}+\mathbf{c}) = \mathbf{a}\times\mathbf{b} + \mathbf{a}\times\mathbf{c} \)
    parallel \( \Rightarrow \mathbf{a}\times\mathbf{b}=0 \)
    perpendicular \( \Rightarrow |\mathbf{a}\times\mathbf{b}| = |\mathbf{a}||\mathbf{b}| \)

    \( \mathbf{r}=\mathbf{a}+\lambda\mathbf{d}_1+\mu\mathbf{d}_2 \)
    \( \mathbf{r}\cdot\mathbf{n}=\mathbf{a}\cdot\mathbf{n} \)
    \( n_1x+n_2y+n_3z=d \)

    line–plane angle \( = 90^\circ-\phi \)
    plane–plane angle \( = \) angle between normals

    intersection: substitute line into plane
    planes: parallel or intersect in a line
    three planes \( \Rightarrow \) point, line, or none

IB Past Paper Problems

Select a topic and unit, then click the button below to get a new problem.

Press the button to start!