-
1. You should know that the scalar (dot) product is linked to the angle between
two vectors:
\[
\mathbf{a}\cdot\mathbf{b}
= |\mathbf{a}||\mathbf{b}|\cos\theta
= a_1b_1 + a_2b_2 + a_3b_3.
\]
-
2. You should be able to use the algebraic properties of the scalar product:
\( \mathbf{a}\cdot\mathbf{b} = \mathbf{b}\cdot\mathbf{a} \),
\( (-\mathbf{a})\cdot\mathbf{b} = -(\mathbf{a}\cdot\mathbf{b}) \),
>\( \mathbf{a}\cdot(\mathbf{b}+\mathbf{c}) = (\mathbf{a}\cdot\mathbf{b})+(\mathbf{a}\cdot\mathbf{c}) \),
\( (k\mathbf{a})\cdot\mathbf{b} = k(\mathbf{a}\cdot\mathbf{b}) \),
and
\( \mathbf{a}\cdot\mathbf{a} = |\mathbf{a}|^2 \).
-
3. You should know that vectors \( \mathbf{a} \) and \( \mathbf{b} \) are
parallel if \( \mathbf{b} = t\mathbf{a} \) for some scalar \( t \),
and perpendicular if \( \mathbf{a}\cdot\mathbf{b} = 0 \).
-
4. You should be able to find and use various forms of the equation of a line.
\[
\mathbf{r} = \mathbf{a} + \lambda\mathbf{d},
\]
where \( \mathbf{d} \) is a direction vector and \( \mathbf{a} \) is the
position vector of a point on the line.
-
5. Writing
\( \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \)
gives the parametric equations of the line by expressing
\( x, y, z \) in terms of \( \lambda \).
Eliminating \( \lambda \) gives the Cartesian form
\[
\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}.
\]
-
6. Line (motion):
\( \mathbf{r}=\mathbf{a}+\lambda\mathbf{d} \),
with \( \lambda=t \), velocity \( \mathbf{d} \), speed \( |\mathbf{d}| \).
Angle between lines:
\( \cos\theta=\dfrac{\mathbf{d}_1\cdot\mathbf{d}_2}{|\mathbf{d}_1||\mathbf{d}_2|} \).
Cross product:
\( \mathbf{a}\times\mathbf{b}=
\begin{pmatrix}
a_2b_3-a_3b_2\\
a_3b_1-a_1b_3\\
a_1b_2-a_2b_1
\end{pmatrix} \),
\( |\mathbf{a}\times\mathbf{b}|=|\mathbf{a}||\mathbf{b}|\sin\theta \)
(area of parallelogram).
-
7. Properties of cross product:
\( \mathbf{a}\times\mathbf{b} = -\,\mathbf{b}\times\mathbf{a} \)
\( (k\mathbf{a})\times\mathbf{b} = \mathbf{a}\times(k\mathbf{b}) = k(\mathbf{a}\times\mathbf{b}) \)
\( \mathbf{a}\times(\mathbf{b}+\mathbf{c}) = \mathbf{a}\times\mathbf{b} + \mathbf{a}\times\mathbf{c} \)
parallel \( \Rightarrow \mathbf{a}\times\mathbf{b}=0 \)
perpendicular \( \Rightarrow |\mathbf{a}\times\mathbf{b}| = |\mathbf{a}||\mathbf{b}| \)
\( \mathbf{r}=\mathbf{a}+\lambda\mathbf{d}_1+\mu\mathbf{d}_2 \)
\( \mathbf{r}\cdot\mathbf{n}=\mathbf{a}\cdot\mathbf{n} \)
\( n_1x+n_2y+n_3z=d \)
line–plane angle \( = 90^\circ-\phi \)
plane–plane angle \( = \) angle between normals
intersection: substitute line into plane
planes: parallel or intersect in a line
three planes \( \Rightarrow \) point, line, or none